Subquery란
SQL 쿼리 내에서 또다른 SELECT절을 사용하는 문법을 쓸 때, 내부에 포함되는 SELECT절을 서브쿼리(Subquery)라 부른다. SELECT 절에서 사용되는 서브쿼리를 스칼라 서브쿼리(Scala Subquery), FROM절에서 사용되는 서브쿼리를 인라인뷰(Inline View), WHERE절에서 사용되는 서브쿼리를 중첩 서브쿼리(Nested Subquery)라고 부른다.
Scala Subquery란
SELECT절에서 사용되는 서브쿼리로, 반드시 하나의 record(행)을 리턴해야하며 그 행도 하나의 컬럼값만 가지고 있어야 한다. (즉 단일행, 단일 컬럼을 반환해야 한다)
예제로, 다음과 같은 두 개의 테이블이 있다고 하자. DEPARTMENTS는 회사에 있는 부서들의 부서id와 부서명을, EMPLOYEES는 임직원들의 이름과 소속 부서id 등을 가진다.
이 때, 임직원들의 이름과 그들이 속한 부서의 이름을 함께 조회하고 싶다고 하고, 스칼라 서브쿼리를 사용해본다고 하자. 이때, 스칼라 서브쿼리의 FROM절에서 DEPARTMENTS를 참조하는가, EMPLOYEES를 참조하는가를 참조하는가를 주의해야 한다.
스칼라 서브쿼리의 FROM절에서 DEPARTMENTS를 참조할 경우의 쿼리와 결과는 다음과 같다.
SELECT EMP_NAME, (
SELECT DEPT_NAME
FROM DEPARTMENTS d
WHERE d.DEPT_ID = e.DEPT_ID)
FROM
EMPLOYEES e;
스칼라 서브쿼리의 FROM절에서 EMPLOYEES를 참조할 경우의 쿼리와 결과는 다음과 같다.
SELECT (
SELECT EMP_NAME
FROM EMPLOYEES e
WHERE d.DEPT_ID = e.DEPT_ID
), DEPT_NAME
FROM
DEPARTMENTS d;
서브쿼리의 FROM절에서 DEPARTMENTS를 참조하는 경우, d.DEPT_ID = e.DEPT_ID를 만족하는 레코드가 하나만 나오기 때문에 문제가 되지 않는다. 하지만 서브쿼리의 FROM절에서 EMPLOYEES를 참조하는 경우, d.DEPT_ID = e.DEPT_ID를 만족하는 레코드가 다수가 나오기 때문에 문제가 되고, 위와 같은 오류가 생기는 것이다.
즉, 스칼라 서브쿼리는 반드시 하나의 레코드와 하나의 컬럼값을 리턴해야 한다.
스칼라 서브쿼리의 성능 측면에서의 문제점 & LEFT OUTER JOIN으로 변환
쿼리는 FROM(과 JOIN) → WHERE → GROUP BY → HAVING → SELECT → ORDER BY 순으로 실행된다. 즉 특정 테이블에서 특정 조건에 맞는 레코들들을 모두 뽑아오고, 해당 레코드들에 대해 select절에서 특정 컬럼들을 뽑아내는 식으로 동작한다. 스칼라 서브쿼리는 건수만큼 반복해서 수행된다. 데이터가 많아질수록 성능 저하의 주범이 될 수 있는 것이다.
따라서, LEFT OUTER JOIN과 Inline View를 활용하는 식으로 쿼리를 바꿔 성능을 개선시킬 수 있다. 다음 쿼리를 살펴보자.
SELECT DEPT_NAME, (
SELECT COUNT(*)
FROM EMPLOYEES e
WHERE e.DEPT_ID = d.DEPT_ID
) NUMS
FROM DEPARTMENTS d;
부서별로 부서명과 소속 인원들의 이름을 보는, 스칼라 서브쿼리를 쓰는 쿼리다. 이를 LEFT OUTER JOIN과 Inline View을 활용하는 형태로 다음과 같이 바꿔쓸 수 있다.
SELECT DEPT_NAME, c.NUMS
FROM DEPARTMENTS d
LEFT OUTER JOIN (
SELECT e.DEPT_ID, COUNT(*) AS NUMS
FROM EMPLOYEES e
GROUP BY e.DEPT_ID
) c
ON d.DEPT_ID = c.DEPT_ID;
기존에는 해당 서브쿼리가 건수만큼 반복돼서 수행됐지만, 이렇게하면 한 번만 수행되고 끝난다.
하지만 늘상 스칼라 서브쿼리를 LEFT OUTER JOIN으로 바꾼다고 성능 향상이 되는 건 아니다(그러면 스칼라 서브쿼리 아무도 안 쓰지..). 상황별로 스칼라 서브쿼리를 쓰는게 이득일 때도 있다. 다만 스칼라 서브쿼리를 쓸 때는 속도를 고려하는 습관을 가지자.
'DB' 카테고리의 다른 글
[DB] 실행 계획이란 (1) | 2024.02.16 |
---|---|
[DB ]rowstore vs columnstore (row oriented db vs column oriented db) (1) | 2024.02.04 |
[짧] Hard delete vs Soft delete (1) | 2023.08.06 |